enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coffin corner (aerodynamics) - Wikipedia

    en.wikipedia.org/wiki/Coffin_corner_(aerodynamics)

    The minimum such speed is the stall speed, or V SO. The indicated airspeed at which a fixed-wing aircraft stalls varies with the weight of the aircraft but does not vary significantly with altitude. At speeds close to the stall speed the aircraft's wings are at a high angle of attack. At higher altitudes, the air density is lower than at sea level.

  3. Stall (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Stall_(fluid_dynamics)

    A stall does not mean that the engine(s) have stopped working, or that the aircraft has stopped moving—the effect is the same even in an unpowered glider aircraft. Vectored thrust in aircraft is used to maintain altitude or controlled flight with wings stalled by replacing lost wing lift with engine or propeller thrust , thereby giving rise ...

  4. Ground effect (aerodynamics) - Wikipedia

    en.wikipedia.org/wiki/Ground_effect_(aerodynamics)

    During takeoff, ground effect can cause the aircraft to "float" while below the recommended climb speed. The pilot can then fly just above the runway while the aircraft accelerates in ground effect until a safe climb speed is reached. [2] For rotorcraft, ground effect results in less drag on the rotor during hovering close to the ground. At ...

  5. Wing loading - Wikipedia

    en.wikipedia.org/wiki/Wing_loading

    As stalling is due to wing loading and maximum lift coefficient at a given altitude and speed, this limits the turning radius due to maximum load factor. At Mach 0.85 and 0.7 lift coefficient, a wing loading of 50 lb/sq ft (240 kg/m 2 ) can reach a structural limit of 7.33 g up to 15,000 feet (4,600 m) and then decreases to 2.3 g at 40,000 feet ...

  6. Flight envelope - Wikipedia

    en.wikipedia.org/wiki/Flight_envelope

    The right side of the graph represents the maximum speed of the aircraft. This is typically sloped in the same manner as the stall line due to air resistance getting lower at higher altitudes, up to the point where an increase in altitude no longer increases the maximum speed due to lack of oxygen to feed the engines.

  7. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    Graphs of C L and C D vs. speed are referred to as drag curves. Speed is shown increasing from left to right. The lift/drag ratio is given by the slope from the origin to some point on the curve and so the maximum L/D ratio does not occur at the point of least drag coefficient, the leftmost point. Instead, it occurs at a slightly greater speed.

  8. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    The angle at which maximum lift coefficient occurs is the stall angle of the airfoil, which is approximately 10 to 15 degrees on a typical airfoil. The stall angle for a given profile is also increasing with increasing values of the Reynolds number, at higher speeds indeed the flow tends to stay attached to the profile for longer delaying the ...

  9. Angle of attack - Wikipedia

    en.wikipedia.org/wiki/Angle_of_attack

    Stall speed corresponds to the angle of attack at the maximum coefficient of lift (C LMAX) A typical lift coefficient curve for an airfoil at a given airspeed. The lift coefficient of a fixed-wing aircraft varies with angle of attack. Increasing angle of attack is associated with increasing lift coefficient up to the maximum lift coefficient ...