Search results
Results from the WOW.Com Content Network
In contrast, heterogeneous catalysis describes processes where the catalysts and substrate are in distinct phases, typically solid and gas, respectively. [1] The term is used almost exclusively to describe solutions and implies catalysis by organometallic compounds. Homogeneous catalysis is an established technology that continues to evolve.
The process contrasts with homogeneous catalysis where the reagents, products and catalyst exist in the same phase. Phase distinguishes between not only solid , liquid , and gas components, but also immiscible mixtures (e.g., oil and water ), or anywhere an interface is present.
A slurry reactor contains the catalyst in a powdered or granular form. [7] This reactor is typically used when one reactant is a gas and the other a liquid while the catalyst is a solid. The reactant gas is put through the liquid and dissolved. It then diffuses onto the catalyst surface.
The trade-off is activity (speed of reaction) vs. cost of the catalyst and cost of the apparatus required for use of high pressures. Notice that the Raney-nickel catalysed hydrogenations require high pressures: [8] [9] Catalysts are usually classified into two broad classes: homogeneous and heterogeneous. Homogeneous catalysts dissolve in the ...
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
Oxidation catalysis is conducted by both heterogeneous catalysis and homogeneous catalysis. In the heterogeneous processes, gaseous substrate and oxygen (or air) are passed over solid catalysts. Typical catalysts are platinum, and redox-active oxides of iron, vanadium, and molybdenum.
The solution-phase intermediates are not necessarily distinguishable from those obtained during homogeneous cross-couplings – for example, a heterogeneous Pd-catalyzed Suzuki reaction still proceeds via oxidative addition of the electrophile by Pd(0), transmetallation of a boronate, and reductive elimination to give product and regenerate Pd ...
It is usually practiced as homogeneous catalysis. Scheme 1 illustrates this process. Molecule A enters this catalytic system to produce the comonomer, B, which along with A enters the next catalytic process to produce the final product, P. This one-pot approach can decrease product loss from isolation or purification of intermediates.