enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    In contrast to the frequency domain analysis of the classical control theory, modern control theory utilizes the time-domain state space representation, [citation needed] a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs ...

  3. Controllability Gramian - Wikipedia

    en.wikipedia.org/wiki/Controllability_Gramian

    If, in addition, all eigenvalues of have negative real parts (is stable), and the unique solution of the Lyapunov equation + = is positive definite, the system is controllable. The solution is called the Controllability Gramian and can be expressed as W c = ∫ 0 ∞ e A τ B B T e A T τ d τ {\displaystyle {\boldsymbol {W_{c}}}=\int _{0 ...

  4. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    In control engineering and system identification, a state-space representation is a mathematical model of a physical system specified as a set of input, output, and variables related by first-order differential equations or difference equations.

  5. Caratheodory-π solution - Wikipedia

    en.wikipedia.org/wiki/Caratheodory-π_solution

    A Carathéodory-π solution can be applied towards the practical stabilization of a control system. [ 6 ] [ 7 ] It has been used to stabilize an inverted pendulum, [ 6 ] control and optimize the motion of robots, [ 7 ] [ 8 ] slew and control the NPSAT1 spacecraft [ 3 ] and produce guidance commands for low-thrust space missions.

  6. H-infinity methods in control theory - Wikipedia

    en.wikipedia.org/wiki/H-infinity_methods_in...

    H ∞ (i.e. "H-infinity") methods are used in control theory to synthesize controllers to achieve stabilization with guaranteed performance. To use H ∞ methods, a control designer expresses the control problem as a mathematical optimization problem and then finds the controller that solves this optimization.

  7. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    Modern control theory, instead of changing domains to avoid the complexities of time-domain ODE mathematics, converts the differential equations into a system of lower-order time domain equations called state equations, which can then be manipulated using techniques from linear algebra. [2]

  8. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    Optimal control problem benchmark (Luus) with an integral objective, inequality, and differential constraint. Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. [1]

  9. Hall circles - Wikipedia

    en.wikipedia.org/wiki/Hall_circles

    Hall circles (also known as M-circles and N-circles) are a graphical tool in control theory used to obtain values of a closed-loop transfer function from the Nyquist plot (or the Nichols plot) of the associated open-loop transfer function. Hall circles have been introduced in control theory by Albert C. Hall in his thesis. [1]