Search results
Results from the WOW.Com Content Network
In contrast to the frequency domain analysis of the classical control theory, modern control theory utilizes the time-domain state space representation, [citation needed] a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs ...
If, in addition, all eigenvalues of have negative real parts (is stable), and the unique solution of the Lyapunov equation + = is positive definite, the system is controllable. The solution is called the Controllability Gramian and can be expressed as W c = ∫ 0 ∞ e A τ B B T e A T τ d τ {\displaystyle {\boldsymbol {W_{c}}}=\int _{0 ...
In control engineering and system identification, a state-space representation is a mathematical model of a physical system specified as a set of input, output, and variables related by first-order differential equations or difference equations.
A Carathéodory-π solution can be applied towards the practical stabilization of a control system. [ 6 ] [ 7 ] It has been used to stabilize an inverted pendulum, [ 6 ] control and optimize the motion of robots, [ 7 ] [ 8 ] slew and control the NPSAT1 spacecraft [ 3 ] and produce guidance commands for low-thrust space missions.
H ∞ (i.e. "H-infinity") methods are used in control theory to synthesize controllers to achieve stabilization with guaranteed performance. To use H ∞ methods, a control designer expresses the control problem as a mathematical optimization problem and then finds the controller that solves this optimization.
Modern control theory, instead of changing domains to avoid the complexities of time-domain ODE mathematics, converts the differential equations into a system of lower-order time domain equations called state equations, which can then be manipulated using techniques from linear algebra. [2]
Optimal control problem benchmark (Luus) with an integral objective, inequality, and differential constraint. Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. [1]
Hall circles (also known as M-circles and N-circles) are a graphical tool in control theory used to obtain values of a closed-loop transfer function from the Nyquist plot (or the Nichols plot) of the associated open-loop transfer function. Hall circles have been introduced in control theory by Albert C. Hall in his thesis. [1]