Search results
Results from the WOW.Com Content Network
A three-phase induction motor has a simple design, inherently high starting torque and high efficiency. Such motors are applied in industry for many applications. A three-phase motor is more compact and less costly than a single-phase motor of the same voltage class and rating, and single-phase AC motors above 10 hp (7.5 kW) are uncommon. Three ...
The field produced by a single-phase winding can provide energy to a motor already rotating, but without auxiliary mechanisms the motor will not accelerate from a stop. A rotating magnetic field of steady amplitude requires that all three phase currents be equal in magnitude, and accurately displaced one-third of a cycle in phase.
The motor size constant and motor velocity constant (, alternatively called the back EMF constant) are values used to describe characteristics of electrical motors. Motor constant [ edit ]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Three-phase_induction_motor&oldid=1125968498"
In vector control, an AC induction or synchronous motor is controlled under all operating conditions like a separately excited DC motor. [21] That is, the AC motor behaves like a DC motor in which the field flux linkage and armature flux linkage created by the respective field and armature (or torque component) currents are orthogonally aligned such that, when torque is controlled, the field ...
This allows one to choose single-phase AC power at either 110–120 volts between phase and neutral or 220–240 volts between phase and phase. Since these two modes do not need three phases there is also a dark yellow-orange four-pin connector available designed for a single-phase 110–120 or 220–240 volt load.
Where two voltages are given below separated by "/", the first is the root-mean-square voltage between a phase and the neutral connector, whereas the second is the corresponding root-mean-square voltage between two phases (exception: the category shown below called "One Phase", where 240 V is the root-mean-square voltage between the two legs of a split phase).
Reducing voltage to an induction motor will slightly affect the motor speed as slip will increase, but speed is mainly a function of the supply frequency and the number of poles. Motor efficiency is optimum at reasonable load (typically 75%) and at the designed voltage, and will fall off slightly with small variations either side of this voltage.