Search results
Results from the WOW.Com Content Network
The algorithmic technique creates a schedule based on one or more application-specific objectives (i.e., optimality criteria). The primary objective for scheduling actions having TUFs is maximal utility accrual (UA). The accrued utility is an application-specific polynomial sum of the schedule's completed actions' utilities.
The scheduler is an operating system module that selects the next jobs to be admitted into the system and the next process to run. Operating systems may feature up to three distinct scheduler types: a long-term scheduler (also known as an admission scheduler or high-level scheduler), a mid-term or medium-term scheduler, and a short-term scheduler.
A real-time scheduling algorithm can be classified as static or dynamic. For a static scheduler, task priorities are determined before the system runs. A dynamic scheduler determines task priorities as it runs. [4] Tasks are accepted by the hardware elements in a real-time scheduling system from the computing environment and processed in real-time.
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of jobs, each of which has a specific processing-time. There is also a number m specifying the number of machines that can process the jobs. The LPT algorithm works as follows:
At any specific time, processes can be grouped into two categories: those that are waiting for input or output (called "I/O bound"), and those that are fully utilizing the CPU ("CPU bound"). In primitive systems, the software would often "poll", or "busywait" while waiting for requested input (such as disk, keyboard or network input). During ...
Earliest deadline first (EDF) or least time to go is a dynamic priority scheduling algorithm used in real-time operating systems to place processes in a priority queue. Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue will be searched for the process closest to its deadline.
In computer science, gang scheduling is a scheduling algorithm for parallel systems that schedules related threads or processes to run simultaneously on different processors. Usually these will be threads all belonging to the same process, but they may also be from different processes, where the processes could have a producer-consumer ...
Further, in planning with rational or real time, the state space may be infinite, unlike in classical planning or planning with integer time. Temporal planning is closely related to scheduling problems when uncertainty is involved and can also be understood in terms of timed automata. The Simple Temporal Network with Uncertainty (STNU) is a ...