Search results
Results from the WOW.Com Content Network
An algebraic equation is an equation involving polynomials, for which algebraic expressions may be solutions. If you restrict your set of constants to be numbers, any algebraic expression can be called an arithmetic expression. However, algebraic expressions can be used on more abstract objects such as in Abstract algebra.
A Karnaugh map (KM or K-map) is a diagram that can be used to simplify a Boolean algebra expression. Maurice Karnaugh introduced the technique in 1953 [ 1 ] [ 2 ] as a refinement of Edward W. Veitch 's 1952 Veitch chart , [ 3 ] [ 4 ] which itself was a rediscovery of Allan Marquand 's 1881 logical diagram [ 5 ] [ 6 ] or Marquand diagram . [ 4 ]
An algebraic expression is an expression built up from algebraic constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by a rational number). [41] For example, 3x 2 − 2xy + c is an algebraic expression.
The first step is to determine a common denominator D of these fractions – preferably the least common denominator, which is the least common multiple of the Q i. This means that each Q i is a factor of D , so D = R i Q i for some expression R i that is not a fraction.
The systematic use of algebraic manipulations for simplifying expressions (more specifically equations) may be dated to 9th century, with al-Khwarizmi's book The Compendious Book on Calculation by Completion and Balancing, which is titled with two such types of manipulation.
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include: Simplification of algebraic expressions, in computer algebra; Simplification of boolean expressions i.e. logic optimization
Algebraic notation describes the rules and conventions for writing mathematical expressions, as well as the terminology used for talking about parts of expressions. For example, the expression + has the following components: Algebraic expression notation: 1 – power (exponent) 2 – coefficient 3 – term
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]