enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Seismic velocity structure - Wikipedia

    en.wikipedia.org/wiki/Seismic_Velocity_Structure

    The velocity structure of the Earth. The red line is the P-wave velocity, the blue line is the S-wave velocity, and the green line density. (Data was adopted from the RockHound Python library.) Seismic velocity structure is the distribution and variation of seismic wave speeds within Earth's and other planetary bodies' subsurface.

  3. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile. Intuitively the wave envelope is the "global profile" of the wave, which "contains" changing "local profiles inside the ...

  4. Gardner's relation - Wikipedia

    en.wikipedia.org/wiki/Gardner's_relation

    where is bulk density given in g/cm 3, is P-wave velocity given in ft/s, and and are empirically derived constants that depend on the geology. Gardner et al. proposed that one can obtain a good fit by taking α = 0.23 {\displaystyle \alpha =0.23} and β = 0.25 {\displaystyle \beta =0.25} . [ 1 ]

  5. Seismic anisotropy - Wikipedia

    en.wikipedia.org/wiki/Seismic_anisotropy

    The favored methods for detecting seismic anisotropy are shear wave splitting, seismic tomography of surface waves and body waves, and converted-wave scattering in the context of a receiver function. In shear-wave splitting, the S wave splits into two orthogonal polarizations, corresponding to the fastest and slowest wavespeeds in that medium ...

  6. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Trajectory of a particle with initial position vector r 0 and velocity v 0, subject to constant acceleration a, all three quantities in any direction, and the position r(t) and velocity v(t) after time t. The initial position, initial velocity, and acceleration vectors need not be collinear, and the equations of motion take an almost identical ...

  8. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The wave equation is linear in u and is left unaltered by translations in space and time. Therefore, we can generate a great variety of solutions by translating and summing spherical waves. Let φ(ξ, η, ζ) be an arbitrary function of three independent variables, and let the spherical wave form F be a delta function.

  9. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.