Search results
Results from the WOW.Com Content Network
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. [1] The notion of an expanding universe was first scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations.
The text of each lecture was published in The Listener a week after the broadcast, the first time that the term "big bang" appeared in print. [10] As evidence in favour of the Big Bang model mounted, and the consensus became widespread, Hoyle himself, albeit somewhat reluctantly, admitted to it by formulating a new cosmological model that other ...
A version of the periodic table indicating the origins – including big bang nucleosynthesis – of the elements. All elements above 103 are also man-made and are not included. Big Bang nucleosynthesis produced very few nuclei of elements heavier than lithium due to a bottleneck: the absence of a stable nucleus with 8 or 5 nucleons. This ...
The CMB is landmark evidence of the Big Bang theory for the origin of the universe. In the Big Bang cosmological models, during the earliest periods, the universe was filled with an opaque fog of dense, hot plasma of sub-atomic particles. As the universe expanded, this plasma cooled to the point where protons and electrons combined to form ...
The horizon problem (also known as the homogeneity problem) is a cosmological fine-tuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected regions of space in the absence of a mechanism that sets the same initial conditions everywhere.
The "Big Bang" scenario, with cosmic inflation and standard particle physics, is the only cosmological model consistent with the observed continuing expansion of space, the observed distribution of lighter elements in the universe (hydrogen, helium, and lithium), and the spatial texture of minute irregularities (anisotropies) in the CMB radiation.
The traditional model of the Big Bang. The use of only general relativity to predict what happened in the beginnings of the universe has been heavily criticized, as quantum mechanics becomes a significant factor in the high-energy environment of the earliest stage of the universe, and general relativity on its own fails to make accurate predictions.
Conformal cyclic cosmology (CCC) is a cosmological model in the framework of general relativity and proposed by theoretical physicist Roger Penrose. [1] [2] [3] In CCC, the universe iterates through infinite cycles, with the future timelike infinity (i.e. the latest end of any possible timescale evaluated for any point in space) of each previous iteration being identified with the Big Bang ...