enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.

  3. Free variables and bound variables - Wikipedia

    en.wikipedia.org/wiki/Free_variables_and_bound...

    Variable binding relates three things: a variable v, a location a for that variable in an expression and a non-leaf node n of the form Q(v, P). Note: we define a location in an expression as a leaf node in the syntax tree. Variable binding occurs when that location is below the node n. In the lambda calculus, x is a bound variable in the term M

  4. de Bruijn index - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_index

    In mathematical logic, the de Bruijn index is a tool invented by the Dutch mathematician Nicolaas Govert de Bruijn for representing terms of lambda calculus without naming the bound variables. [1] Terms written using these indices are invariant with respect to α-conversion, so the check for α-equivalence is the same as that for syntactic ...

  5. Simply typed lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Simply_typed_lambda_calculus

    In the 1930s Alonzo Church sought to use the logistic method: [a] his lambda calculus, as a formal language based on symbolic expressions, consisted of a denumerably infinite series of axioms and variables, [b] but also a finite set of primitive symbols, [c] denoting abstraction and scope, as well as four constants: negation, disjunction, universal quantification, and selection respectively ...

  6. Lambda calculus definition - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus_definition

    The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.

  7. Mogensen–Scott encoding - Wikipedia

    en.wikipedia.org/wiki/Mogensen–Scott_encoding

    Mogensen extends Scott encoding to encode any untyped lambda term as data. This allows a lambda term to be represented as data, within a Lambda calculus meta program. The meta function mse converts a lambda term into the corresponding data representation of the lambda term; ⁡ [] =,,. ⁡ [ ] =,,. ⁡ [] ⁡ [] ⁡ [.

  8. Lambda cube - Wikipedia

    en.wikipedia.org/wiki/Lambda_cube

    The lambda cube. Direction of each arrow is direction of inclusion. In mathematical logic and type theory, the λ-cube (also written lambda cube) is a framework introduced by Henk Barendregt [1] to investigate the different dimensions in which the calculus of constructions is a generalization of the simply typed λ-calculus.

  9. Hindley–Milner type system - Wikipedia

    en.wikipedia.org/wiki/Hindley–Milner_type_system

    The expressions to be typed are exactly those of the lambda calculus extended with a let-expression as shown in the adjacent table. Parentheses can be used to disambiguate an expression. The application is left-binding and binds stronger than abstraction or the let-in construct. Types are syntactically split into two groups, monotypes and ...