enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  3. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.

  4. Invariant subspace problem - Wikipedia

    en.wikipedia.org/wiki/Invariant_subspace_problem

    Every operator on a non-trivial complex finite dimensional vector space has an eigenvector, solving the invariant subspace problem for these spaces. In the field of mathematics known as functional analysis , the invariant subspace problem is a partially unresolved problem asking whether every bounded operator on a complex Banach space sends ...

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Moreover, if the entire vector space V can be spanned by the eigenvectors of T, or equivalently if the direct sum of the eigenspaces associated with all the eigenvalues of T is the entire vector space V, then a basis of V called an eigenbasis can be formed from linearly independent eigenvectors of T. When T admits an eigenbasis, T is ...

  6. Invariant subspace - Wikipedia

    en.wikipedia.org/wiki/Invariant_subspace

    In particular, a nonzero invariant vector (i.e. a fixed point of T) spans an invariant subspace of dimension 1. As a consequence of the fundamental theorem of algebra, every linear operator on a nonzero finite-dimensional complex vector space has an eigenvector. Therefore, every such linear operator in at least two dimensions has a proper non ...

  7. Generalized vector space model - Wikipedia

    en.wikipedia.org/wiki/Generalized_vector_space_model

    The Generalized vector space model is a generalization of the vector space model used in information retrieval. Wong et al. [1] presented an analysis of the problems that the pairwise orthogonality assumption of the vector space model (VSM) creates. From here they extended the VSM to the generalized vector space model (GVSM).

  8. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.

  9. Vector optimization - Wikipedia

    en.wikipedia.org/wiki/Vector_optimization

    A multi-objective optimization problem is a special case of a vector optimization problem: The objective space is the finite dimensional Euclidean space partially ordered by the component-wise "less than or equal to" ordering.