enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Volterra's function - Wikipedia

    en.wikipedia.org/wiki/Volterra's_function

    The construction of V begins by determining the largest value of x in the interval [0, 1/8] for which f ′(x) = 0. Once this value (say x 0) is determined, extend the function to the right with a constant value of f(x 0) up to and including the point 1/8. Once this is done, a mirror image of the function can be created starting at the point 1/ ...

  3. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken. For example, the second partial derivatives of a function f(x, y) are: [6]

  4. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    The method returns a pair of the evaluated function and its derivative. The method traverses the expression tree recursively until a variable is reached. If the derivative with respect to this variable is requested, its derivative is 1, 0 otherwise. Then the partial function as well as the partial derivative are evaluated. [16]

  5. Exact differential equation - Wikipedia

    en.wikipedia.org/wiki/Exact_differential_equation

    Given a simply connected and open subset D of and two functions I and J which are continuous on D, an implicit first-order ordinary differential equation of the form (,) + (,) =,is called an exact differential equation if there exists a continuously differentiable function F, called the potential function, [1] [2] so that

  6. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  7. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    In mathematics, to approximate a derivative to an arbitrary order of ... 8 1/280: −4/105: 1/5: −4/5 ... For example, the third derivative with a second-order ...

  8. Grünwald–Letnikov derivative - Wikipedia

    en.wikipedia.org/wiki/Grünwald–Letnikov...

    In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague , in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.

  9. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...