Search results
Results from the WOW.Com Content Network
It is defined as one kilocalorie of energy (1000 thermochemical gram calories) per one mole of substance. The unit symbol is written kcal/mol or kcal⋅mol −1. As typically measured, one kcal/mol represents a temperature increase of one degree Celsius in one liter of water (with a mass of 1 kg) resulting from the reaction of one mole of reagents.
In other scientific contexts, the term "calorie" and the symbol "cal" almost always refers to the small unit; the "large" unit being generally called "kilocalorie" with symbol "kcal". It is mostly used to express the amount of energy released in a chemical reaction or phase change, typically per mole of substance, as in kilocalories per mole. [32]
The SI unit of molar heat capacity is joule per kelvin per mole, J⋅K −1 ⋅mol −1. Like the specific heat, the measured molar heat capacity of a substance, especially a gas, may be significantly higher when the sample is allowed to expand as it is heated ( at constant pressure , or isobaric ) than when it is heated in a closed vessel that ...
link = Kilocalorie per mole: kJ/mol ==kJ/mol: default = kcal/mol: link = Joule per mole: ... 1/3600: gram-mole per hour: gram-moles per hour: mmol/s: Mole (unit) gmol ...
The standard enthalpy of formation is measured in units of energy per amount of substance, usually stated in kilojoule per mole (kJ mol −1), but also in kilocalorie per mole, joule per mole or kilocalorie per gram (any combination of these units conforming to the energy per mass or amount guideline).
In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy (E a) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [2]
The "grand calorie" (also "kilocalorie", "kilogram-calorie", or "food calorie"; "kcal" or "Cal") is 1000 cal, that is, exactly 4184 J. It was originally defined so that the heat capacity of 1 kg of water would be 1 kcal/°C. With these units of heat energy, the units of heat capacity are 1 cal/°C = 4.184 J/K ; 1 kcal/°C = 4184 J/K.
For gases, departure from 3 R per mole of atoms is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to ...