Search results
Results from the WOW.Com Content Network
Heterothermy or heterothermia (from Greek ἕτερος heteros "other" and θέρμη thermē "heat") is a physiological term for animals that vary between self-regulating their body temperature, and allowing the surrounding environment to affect it.
The typical signs of malignant hyperthermia are due to a hypercatabolic state, which presents as a very high temperature, an increased heart rate and abnormally rapid breathing, increased carbon dioxide production, increased oxygen consumption, mixed acidosis, rigid muscles, and rhabdomyolysis. [5]
Cancer research has been ongoing for centuries, trying to elucidate the origin of its cause. As cancer research evolves with time, the scientific community tends to pay more attention to cell metabolism and how to target these metabolic needs and changes that cells undergo during carcinogenesis. [ 45 ]
External application of heat may cause surface burns. [13] Tissue damage to a target organ with a regional treatment will vary with what tissue is heated (e.g. brain treated directly may injure the brain, lung tissue treated directly may cause pulmonary problems). Whole body hyperthermia can cause swelling, blood clots, and bleeding. [12]
ultra: from Latin, meaning beyond; micro and scopic: from ancient Greek, meaning small looking, referring to the fineness of particulates; silico-: from Latin, silicon; volcano: from Latin, referring to volcano; coni: from ancient Greek (κόνις, kónis) which means dust-osis: from ancient Greek, suffix to indicate a medical condition
While uncommon in solid tumors, chromosomal translocations are a common cause of these diseases. This commonly leads to a different approach in diagnosis and treatment of hematological malignancies. Hematological malignancies are malignant neoplasms ("cancer"), and they are generally treated by specialists in hematology and/or oncology.
Otto Warburg postulated this change in metabolism is the fundamental cause of cancer, [8] a claim now known as the Warburg hypothesis. Today, mutations in oncogenes and tumor suppressor genes are thought to be responsible for malignant transformation , and the Warburg effect is considered to be a result of these mutations rather than a cause.
The cancer stem cell model asserts that within a population of tumour cells, there is only a small subset of cells that are tumourigenic (able to form tumours). These cells are termed cancer stem cells (CSCs), and are marked by the ability to both self-renew and differentiate into non-tumourigenic progeny. The CSC model posits that the ...