Search results
Results from the WOW.Com Content Network
This list includes superclusters, galaxy filaments and large quasar groups (LQGs). The structures are listed based on their longest dimension. This list refers only to coupling of matter with defined limits, and not the coupling of matter in general (such as, for example, the cosmic microwave background, which fills the entire universe). All ...
The observable universe is isotropic on scales significantly larger than superclusters, meaning that the statistical properties of the universe are the same in all directions as observed from Earth. The universe is bathed in highly isotropic microwave radiation that corresponds to a thermal equilibrium blackbody spectrum of roughly 2.72548 ...
Listed below are galaxies with diameters greater than 700,000 light-years. This list uses the mean cosmological parameters of the Lambda-CDM model based on results from the 2015 Planck collaboration, where H 0 = 67.74 km/s/Mpc, Ω Λ = 0.6911, and Ω m = 0.3089. [3]
Distance measurements in astronomy have historically been and continue to be confounded by considerable measurement uncertainty. In particular, while stellar parallax can be used to measure the distance to nearby stars, the observational limits imposed by the difficulty in measuring the minuscule parallaxes associated with objects beyond our galaxy meant that astronomers had to look for ...
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. [1] It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it.
The galaxy has a very large halo of much lower intensity "diffuse light" extending to a radius of 600 kpc (2 million ly). [30] [verification needed] The authors of the study identifying the halo conclude that IC 1101 is "possibly one of the largest and most luminous galaxies in the universe". This view has been stated in several other papers as ...
The cosmological evolution of the void regions differs drastically from the evolution of the universe as a whole: there is a long stage when the curvature term dominates, which prevents the formation of galaxy clusters and massive galaxies. Hence, although even the emptiest regions of voids contain more than ~15% of the average matter density ...
Hence, it is unclear whether the observable universe matches the entire universe or is significantly smaller, though it is generally accepted that the universe is larger than the observable universe. The universe may be compact in some dimensions and not in others, similar to how a cuboid [citation needed] is longer in one dimension than the ...