Search results
Results from the WOW.Com Content Network
Seven intervals on the real line and the corresponding seven-vertex interval graph. In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect.
An interval is said to be bounded, if it is both left- and right-bounded; and is said to be unbounded otherwise. Intervals that are bounded at only one end are said to be half-bounded. The empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. Bounded intervals are also commonly known as finite ...
An independent set in an interval graph is just a set of non-overlapping intervals. The problem of finding maximum independent sets in interval graphs has been studied, for example, in the context of job scheduling : given a set of jobs that has to be executed on a computer, find a maximum set of jobs that can be executed without interfering ...
An indifference graph, formed from a set of points on the real line by connecting pairs of points whose distance is at most one. In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other. [1]
The subclass of interval orders obtained by restricting the intervals to those of unit length, so they all have the form (, +), is precisely the semiorders. The complement of the comparability graph of an interval order ( X {\displaystyle X} , ≤) is the interval graph ( X , ∩ ) {\displaystyle (X,\cap )} .
This statistics -related article is a stub. You can help Wikipedia by expanding it.
Let N be the set of all interval colourable graphs. For a graph G ∈ N, the least and the greatest values of t for which G has an interval t-colouring are denoted by w(G) and W(G), respectively. An interval edge coloring of a graph is said to be equitable interval edge coloring if any two color classes of a graph differ by at most one.
The edges of the graph are d-tuples of intervals, one interval in every real line. [1] The simplest case is d = 1. The vertex set of a 1-interval hypergraph is the set of real numbers; each edge in such a hypergraph is an interval of the real line. For example, the set { [−2, −1], [0, 5], [3, 7] } defines a 1-interval