Search results
Results from the WOW.Com Content Network
The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory , the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix .
which can be found by stacking into matrix form a set of equations consisting of the above difference equation and the k – 1 equations =, …, + = +, giving a k-dimensional system of the first order in the stacked variable vector [+] in terms of its once-lagged value, and taking the characteristic equation of this system's matrix. This ...
The matrix t I n − A whose determinant is the characteristic polynomial of A is such a matrix, and since polynomials form a commutative ring, it has an adjugate = (). Then, according to the right-hand fundamental relation of the adjugate, one has ( t I n − A ) B = det ( t I n − A ) I n = p ( t ) I n . {\displaystyle (tI_{n}-A)B=\det ...
There are various equivalent ways to define the determinant of a square matrix A, i.e. one with the same number of rows and columns: the determinant can be defined via the Leibniz formula, an explicit formula involving sums of products of certain entries of the matrix. The determinant can also be characterized as the unique function depending ...
We call p(λ) the characteristic polynomial, and the equation, called the characteristic equation, is an N th-order polynomial equation in the unknown λ. This equation will have N λ distinct solutions, where 1 ≤ N λ ≤ N. The set of solutions, that is, the eigenvalues, is called the spectrum of A. [1] [2] [3]
A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring M n (R). Matrix polynomials are often demonstrated in undergraduate linear algebra classes due to their relevance in showcasing properties of linear transformations represented as matrices, most notably the Cayley–Hamilton ...
A square root of a 2×2 matrix M is another 2×2 matrix R such that M = R 2, where R 2 stands for the matrix product of R with itself. In general, there can be zero, two, four, or even an infinitude of square-root matrices. In many cases, such a matrix R can be obtained by an explicit formula.
In linear algebra, the minimal polynomial μ A of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μ A. The following three statements are equivalent: λ is a root of μ A, λ is a root of the characteristic polynomial χ A ...