enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    The significand (or mantissa) of an IEEE floating-point number is the part of a floating-point number that represents the significant digits. For a positive normalised number it can be represented as m 0.m 1 m 2 m 3...m p−2 m p−1 (where m represents a significant digit, and p is the precision) with non-zero m 0.

  3. Normal number (computing) - Wikipedia

    en.wikipedia.org/wiki/Normal_number_(computing)

    In computing, a normal number is a non-zero number in a floating-point representation which is within the balanced range supported by a given floating-point format: it is a floating point number that can be represented without leading zeros in its significand. The magnitude of the smallest normal number in a format is given by:

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    This means that numbers that appear to be short and exact when written in decimal format may need to be approximated when converted to binary floating-point. For example, the decimal number 0.1 is not representable in binary floating-point of any finite precision; the exact binary representation would have a "1100" sequence continuing endlessly:

  5. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The standard defines five basic formats that are named for their numeric base and the number of bits used in their interchange encoding. There are three binary floating-point basic formats (encoded with 32, 64 or 128 bits) and two decimal floating-point basic formats (encoded with 64 or 128 bits).

  6. Normalized number - Wikipedia

    en.wikipedia.org/wiki/Normalized_number

    In many computer systems, binary floating-point numbers are represented internally using this normalized form for their representations; for details, see normal number (computing). Although the point is described as floating , for a normalized floating-point number, its position is fixed, the movement being reflected in the different values of ...

  7. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.

  8. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    Similar binary floating-point formats can be defined for computers. There is a number of such schemes, the most popular has been defined by Institute of Electrical and Electronics Engineers (IEEE). The IEEE 754-2008 standard specification defines a 64 bit floating-point format with: an 11-bit binary exponent, using "excess-1023" format.

  9. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    It is for this reason that many are surprised to discover that 1/10 + ... + 1/10 (addition of 10 numbers) differs from 1 in binary floating point arithmetic. In fact, the only binary fractions with terminating expansions are of the form of an integer divided by a power of 2, which 1/10 is not. The final conversion is from binary to decimal ...