Search results
Results from the WOW.Com Content Network
In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =
These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,
However, the gamma function, unlike the factorial, is more broadly defined for all complex numbers other than non-positive integers; nevertheless, Stirling's formula may still be applied.
In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. [1] [2] [3] The name factorion was coined by the author Clifford A. Pickover. [4]
The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for
Designed experiments with full factorial design (left), response surface with second-degree polynomial (right) In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors.
Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.
A googol is approximately equal to ! (factorial of 70). Using an integral , binary numeral system , one would need 333 bits to represent a googol, i.e., 10 100 = 2 ( 100 / l o g 10 2 ) ≈ 2 332.19280949 {\displaystyle 10^{100}=2^{(100/\mathrm {log} _{10}2)}\approx 2^{332.19280949}} .