enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Augmented Lagrangian method - Wikipedia

    en.wikipedia.org/wiki/Augmented_Lagrangian_method

    Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.

  3. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    It was proven in 2014 that the elastic net can be reduced to the linear support vector machine. [7] A similar reduction was previously proven for the LASSO in 2014. [8] The authors showed that for every instance of the elastic net, an artificial binary classification problem can be constructed such that the hyper-plane solution of a linear support vector machine (SVM) is identical to the ...

  4. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  5. Tidyverse - Wikipedia

    en.wikipedia.org/wiki/Tidyverse

    tidyr – help transform data specifically into tidy data, where each variable is a column, each observation is a row; each row is an observation, and each value is a cell. readr – help read in common delimited, text files with data; purrr – a functional programming toolkit; tibble – a modern implementation of the built-in data frame data ...

  6. Constrained conditional model - Wikipedia

    en.wikipedia.org/wiki/Constrained_conditional_model

    The constraint can be used as a way to incorporate expressive [clarification needed] prior knowledge into the model and bias the assignments made by the learned model to satisfy these constraints. The framework can be used to support decisions in an expressive output space while maintaining modularity and tractability of training and inference.

  7. LOBPCG - Wikipedia

    en.wikipedia.org/wiki/LOBPCG

    LOBPCG can be trivially adapted for computing several largest singular values and the corresponding singular vectors (partial SVD), e.g., for iterative computation of PCA, for a data matrix D with zero mean, without explicitly computing the covariance matrix D T D, i.e. in matrix-free fashion.

  8. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.

  9. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    The data are also subject to errors, and the errors in are also assumed to be independent with zero mean and standard deviation . Under these assumptions the Tikhonov-regularized solution is the most probable solution given the data and the a priori distribution of x {\displaystyle x} , according to Bayes' theorem .