Search results
Results from the WOW.Com Content Network
A demo for Prim's algorithm based on Euclidean distance. In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The ...
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
For example, Kruskal's algorithm processes edges in turn, deciding whether to include the edge in the MST based on whether it would form a cycle with all previously chosen edges. Both Prim's algorithm and Kruskal's algorithm require processes to know the state of the whole graph, which is very difficult to discover in the message-passing model.
After Bell Laboratories, Prim became vice president of research at Sandia National Laboratories. During his career at Bell Laboratories, Robert Prim along with coworker Joseph Kruskal developed two different algorithms (see greedy algorithm) for finding a minimum spanning tree in a weighted graph, a basic stumbling block in computer network design.
An animation of generating a 30 by 20 maze using Prim's algorithm. This algorithm is a randomized version of Prim's algorithm. Start with a grid full of walls. Pick a cell, mark it as part of the maze. Add the walls of the cell to the wall list. While there are walls in the list: Pick a random wall from the list.
Similarly to Prim's algorithm there are components in Kruskal's approach that can not be parallelised in its classical variant. For example, determining whether or not two vertices are in the same subtree is difficult to parallelise, as two union operations might attempt to join the same subtrees at the same time.
The key insight to the algorithm is a random sampling step which partitions a graph into two subgraphs by randomly selecting edges to include in each subgraph. The algorithm recursively finds the minimum spanning forest of the first subproblem and uses the solution in conjunction with a linear time verification algorithm to discard edges in the graph that cannot be in the minimum spanning tree.
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.