Search results
Results from the WOW.Com Content Network
The hydrophobic effect is the observed tendency of nonpolar substances to aggregate in an aqueous solution and to be excluded by water. [ 1 ] [ 2 ] The word hydrophobic literally means "water-fearing", and it describes the segregation of water and nonpolar substances, which maximizes the entropy of water and minimizes the area of contact ...
The driving mechanism for micellization is the transfer of hydrocarbon chains from water into the oil-like interior. This entropic effect is called the hydrophobic effect. Compared to the increase of entropy of the surrounding water molecules, this hydrophobic interaction is relatively small. The water molecules are highly ordered around the ...
This equation works well for adsorption of some drug molecules to activated carbon in which some adsorbate molecules interact with hydrogen bonding while others interact with a different part of the surface by hydrophobic interactions (hydrophobic effect). The equation was modified to account for the hydrophobic effect (also known as entropy ...
This releases some of the water molecules into the bulk of the water, leading to an increase in entropy. Another related and counter-intuitive example of entropic force is protein folding, which is a spontaneous process and where hydrophobic effect also plays a role. [11]
The hydrophobic interaction is mostly an entropic effect originating from the disruption of the highly dynamic hydrogen bonds between molecules of liquid water by the nonpolar solute, causing the water to form a clathrate-like structure around the non-polar molecules.
The formation of micelles can be understood using thermodynamics: Micelles can form spontaneously because of a balance between entropy and enthalpy. In water, the hydrophobic effect is the driving force for micelle formation, despite the fact that assembling surfactant molecules is unfavorable in terms of both enthalpy and entropy of the system ...
The hydrophobic effect is the desire for non-polar molecules to aggregate in aqueous solutions in order to separate from water. [22] This phenomenon leads to minimum exposed surface area of non-polar molecules to the polar water molecules (typically spherical droplets), and is commonly used in biochemistry to study protein folding and other ...
This is seen in the equation: = < where: ∆ ads is net change of the parameters; G is Gibbs free energy; T is the temperature (SI unit: kelvin) S is the entropy (SI unit: joule per kelvin) H is the enthalpy (SI unit: joule)