enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    But Mendel predicted that this time he would produce both round and wrinkled seeds and in a 50:50 ratio. He performed the cross and harvested 106 round peas and 101 wrinkled peas. Mendel tested his hypothesis with a type of backcross called a testcross. An organism has an unknown genotype which is one of two genotypes (like RR and Rr) that ...

  3. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    Mendel found support for this law in his dihybrid cross experiments. In his monohybrid crosses, an idealized 3:1 ratio between dominant and recessive phenotypes resulted. In dihybrid crosses, however, he found a 9:3:3:1 ratios. This shows that each of the two alleles is inherited independently from the other, with a 3:1 phenotypic ratio for each.

  4. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    In such a test cross, if the individual being tested is heterozygous, a phenotypic ratio of 1:1:1:1 is typically observed. [7] To test Mendel’s idea, he performed complex crosses with plants that were purebred for two characteristics: seed color (yellow and green), seed shape (round and wrinkled).

  5. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    The idea of a dihybrid cross came from Gregor Mendel when he observed pea plants that were either yellow or green and either round or wrinkled. Crossing of two heterozygous individuals will result in predictable ratios for both genotype and phenotype in the offspring. The expected phenotypic ratio of crossing heterozygous parents would be 9:3:3 ...

  6. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    The ratio of the phenotypes is 3:1, typical for a monohybrid cross. When assessing phenotype from this, "3" of the offspring have "Brown" eyes and only one offspring has "green" eyes. (3 are "B?" and 1 is "bb")

  7. Experiments on Plant Hybridization - Wikipedia

    en.wikipedia.org/wiki/Experiments_on_Plant...

    Experiments on Plant Hybridization" (German: Versuche über Pflanzen-Hybriden) is a seminal paper written in 1865 and published in 1866 [1] [2] by Gregor Mendel, an Augustinian friar considered to be the founder of modern genetics.

  8. Particulate inheritance - Wikipedia

    en.wikipedia.org/wiki/Particulate_inheritance

    Gregor Mendel, the Father of Genetics William Bateson Ronald Fisher. Particulate inheritance is a pattern of inheritance discovered by Mendelian genetics theorists, such as William Bateson, Ronald Fisher or Gregor Mendel himself, showing that phenotypic traits can be passed from generation to generation through "discrete particles" known as genes, which can keep their ability to be expressed ...

  9. Mendelian traits in humans - Wikipedia

    en.wikipedia.org/wiki/Mendelian_traits_in_humans

    Autosomal dominant A 50/50 chance of inheritance. Sickle-cell disease is inherited in the autosomal recessive pattern. When both parents have sickle-cell trait (carrier), a child has a 25% chance of sickle-cell disease (red icon), 25% do not carry any sickle-cell alleles (blue icon), and 50% have the heterozygous (carrier) condition. [1]