Search results
Results from the WOW.Com Content Network
The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
The formulas are organized into tables in a hierarchical format: chapter, table, case, subcase, and each case and subcase is accompanied by diagrams. The main topics of the book include: • The behavior of bodies under stress • Analytical, numerical, and experimental methods • Tension, compression, shear, and combined stress • Beams and ...
The polar second moment of area appears in the formulae that describe torsional stress and angular displacement. Torsional stresses: = where is the torsional shear stress, is the applied torque, is the distance from the central axis, and is the polar second moment of area.
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
In this expression, ε 1 and ε 2 are normal strains in the 1- and 2-direction and Υ 12 is the shear strain. σ 1 and σ 2 are the normal stresses and τ 12 is the shear stress. The orientation of the axes 1 and 2 in the above figure is arbitrary. This means that the values for E, G and v are the same in any material direction.
This is only the average stress, actual stress distribution is not uniform. In real world applications, this equation only gives an approximation and the maximum shear stress would be higher. Stress is not often equally distributed across a part so the shear strength would need to be higher to account for the estimate. [2]