Search results
Results from the WOW.Com Content Network
Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]
In the field of computer science, the method is called generate and test (brute force). In elementary algebra, when solving equations, it is called guess and check. [citation needed] This approach can be seen as one of the two basic approaches to problem-solving, contrasted with an approach using insight and theory.
The brute force approach entails two steps: For each possible policy, sample returns while following it; Choose the policy with the largest expected discounted return; One problem with this is that the number of policies can be large, or even infinite.
Brute force attacks can be made less effective by obfuscating the data to be encoded, something that makes it more difficult for an attacker to recognise when he has cracked the code. One of the measures of the strength of an encryption system is how long it would theoretically take an attacker to mount a successful brute force attack against it.
In some cases a brute force approach can be used, as mentioned above. In some other cases, in particular if the equation is in one unknown, it is possible to solve the equation for rational -valued unknowns (see Rational root theorem ), and then find solutions to the Diophantine equation by restricting the solution set to integer-valued solutions.
Brute force consists of checking all assignments of zeros and ones and counting those that have balanced rows and columns (n / 2 zeros and n / 2 ones). As there are 2 n 2 {\displaystyle 2^{n^{2}}} possible assignments and ( n n / 2 ) n {\displaystyle {\tbinom {n}{n/2}}^{n}} sensible assignments, this strategy is not practical except maybe up to ...
The traditional or conventional approach to solving computing problems is to either build mathematical models or have an IF- THEN -ELSE structure. For example, a brute-force search is used in many chess engines, [2] but this approach is computationally expensive and sometimes may arrive at poor solutions. It is for problems like this that ...
A brute-force algorithm for the two-dimensional problem runs in O(n 6) time; because this was prohibitively slow, Grenander proposed the one-dimensional problem to gain insight into its structure. Grenander derived an algorithm that solves the one-dimensional problem in O ( n 2 ) time, [ note 1 ] improving the brute force running time of O ( n 3 ).