Search results
Results from the WOW.Com Content Network
Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]
In the field of computer science, the method is called generate and test (brute force). In elementary algebra, when solving equations, it is called guess and check. [citation needed] This approach can be seen as one of the two basic approaches to problem-solving, contrasted with an approach using insight and theory.
The brute force approach entails two steps: For each possible policy, sample returns while following it; Choose the policy with the largest expected discounted return; One problem with this is that the number of policies can be large, or even infinite.
In some cases a brute force approach can be used, as mentioned above. In some other cases, in particular if the equation is in one unknown, it is possible to solve the equation for rational -valued unknowns (see Rational root theorem ), and then find solutions to the Diophantine equation by restricting the solution set to integer-valued solutions.
One way to speed up a brute-force algorithm is to reduce the search space, that is, the set of candidate solutions, by using heuristics specific to the problem class. For example, in the eight queens problem the challenge is to place eight queens on a standard chessboard so that no queen attacks any other.
Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.
The brute force algorithm finds a 4-clique in this 7-vertex graph (the complement of the 7-vertex path graph) by systematically checking all C(7,4) = 35 4-vertex subgraphs for completeness. In computer science , the clique problem is the computational problem of finding cliques (subsets of vertices, all adjacent to each other, also called ...
The traditional or conventional approach to solving computing problems is to either build mathematical models or have an IF- THEN -ELSE structure. For example, a brute-force search is used in many chess engines, [2] but this approach is computationally expensive and sometimes may arrive at poor solutions. It is for problems like this that ...