enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Biasvariance_tradeoff

    In artificial neural networks, the variance increases and the bias decreases as the number of hidden units increase, [12] although this classical assumption has been the subject of recent debate. [4] Like in GLMs, regularization is typically applied. In k-nearest neighbor models, a high value of k leads to high bias and low variance (see below).

  3. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    This is known as the bias–variance tradeoff. Keeping a function simple to avoid overfitting may introduce a bias in the resulting predictions, while allowing it to be more complex leads to overfitting and a higher variance in the predictions. It is impossible to minimize both simultaneously.

  4. Vapnik–Chervonenkis theory - Wikipedia

    en.wikipedia.org/wiki/Vapnik–Chervonenkis_theory

    The majority of the arguments of how to bound the empirical process rely on symmetrization, maximal and concentration inequalities, and chaining.

  5. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.

  6. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    In general, the method provides improved efficiency in parameter estimation problems in exchange for a tolerable amount of bias (see bias–variance tradeoff). [ 4 ] The theory was first introduced by Hoerl and Kennard in 1970 in their Technometrics papers "Ridge regressions: biased estimation of nonorthogonal problems" and "Ridge regressions ...

  7. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap . Given a sample of size n {\displaystyle n} , a jackknife estimator can be built by aggregating the parameter estimates from each subsample of size ( n − 1 ) {\displaystyle (n-1)} obtained by omitting one ...

  8. Cramér–Rao bound - Wikipedia

    en.wikipedia.org/wiki/Cramér–Rao_bound

    This may occur either if for any unbiased estimator, there exists another with a strictly smaller variance, or if an MVU estimator exists, but its variance is strictly greater than the inverse of the Fisher information. The Cramér–Rao bound can also be used to bound the variance of biased estimators of given bias.

  9. Minimum-variance unbiased estimator - Wikipedia

    en.wikipedia.org/wiki/Minimum-variance_unbiased...

    For a normal distribution with unknown mean and variance, the sample mean and (unbiased) sample variance are the MVUEs for the population mean and population variance. However, the sample standard deviation is not unbiased for the population standard deviation – see unbiased estimation of standard deviation.