Search results
Results from the WOW.Com Content Network
Signed binary angle measurement. Black is traditional degrees representation, green is a BAM as a decimal number and red is hexadecimal 32-bit BAM. In this figure the 32-bit binary integers are interpreted as signed binary fixed-point values with scaling factor 2 −31, representing fractions between −1.0 (inclusive) and +1.0 (exclusive).
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
It can also be described as the shortest path distance in a rotation graph, a graph that has a vertex for each binary tree on a given left-to-right sequence of nodes and an edge for each rotation between two trees. [2] This rotation graph is exactly the graph of vertices and edges of an associahedron. [3]
Sailors have traditionally divided a turn into 32 compass points, which implicitly have an angular separation of 1/32 turn. The binary degree, also known as the binary radian (or brad), is 1 / 256 turn. [21] The binary degree is used in computing so that an angle can be represented to the maximum possible precision in a single byte.
The right rotation operation as shown in the adjacent image is performed with Q as the root and hence is a right rotation on, or rooted at, Q. This operation results in a rotation of the tree in the clockwise direction.
Every rotation in three dimensions is defined by its axis (a vector along this axis is unchanged by the rotation), and its angle — the amount of rotation about that axis (Euler rotation theorem). There are several methods to compute the axis and angle from a rotation matrix (see also axis–angle representation ).
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
In a binary search tree, a right rotation is the movement of a node, X, down to the right. This rotation assumes that X has a left child (or subtree). X's left child, R, becomes X's parent node and R's right child becomes X's new left child. This rotation is done to balance the tree; specifically when the left subtree of node X has a ...