enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational biology - Wikipedia

    en.wikipedia.org/wiki/Gravitational_biology

    Gravitational biology is the study of the effects gravity has on living organisms. Throughout the history of the Earth life has evolved to survive changing conditions, such as changes in the climate and habitat. However, one constant factor in evolution since life first began on Earth is the force of gravity.

  3. Gravitropism - Wikipedia

    en.wikipedia.org/wiki/Gravitropism

    Other examples of gravitropic mutants include those affecting the transport or response to the hormone auxin. [10] In addition to the information about gravitropism which such auxin-transport or auxin-response mutants provide, they have been instrumental in identifying the mechanisms governing the transport and cellular action of auxin as well ...

  4. Gravitaxis - Wikipedia

    en.wikipedia.org/wiki/Gravitaxis

    An example is given by microorganisms with a center of mass that is shifted to one end of the organism. Similar to a buoy, such mass-anisotropic microorganisms orient upwards under gravity. It has been shown that even an asymmetry in the shape of microorganisms can be sufficient to cause gravitaxis.

  5. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    g h is the gravitational acceleration at height h above sea level. R e is the Earth's mean radius. g 0 is the standard gravitational acceleration. The formula treats the Earth as a perfect sphere with a radially symmetric distribution of mass; a more accurate mathematical treatment is discussed below.

  6. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    For example, a force of 1 g on an object sitting on the Earth's surface is caused by the mechanical force exerted in the upward direction by the ground, keeping the object from going into free fall. The upward contact force from the ground ensures that an object at rest on the Earth's surface is accelerating relative to the free-fall condition.

  7. Geopotential spherical harmonic model - Wikipedia

    en.wikipedia.org/wiki/Geopotential_spherical...

    For example, at a radius of 6600 km (about 200 km above Earth's surface) J 3 /(J 2 r) is about 0.002; i.e., the correction to the "J 2 force" from the "J 3 term" is in the order of 2 permille. The negative value of J 3 implies that for a point mass in Earth's equatorial plane the gravitational force is tilted slightly towards the south due to ...

  8. Earth's inner core - Wikipedia

    en.wikipedia.org/wiki/Earth's_inner_core

    the Earth's mass, its gravitational field, and its angular inertia. These are all affected by the density and dimensions of the inner layers. [20] the natural oscillation frequencies and modes of the whole Earth oscillations, when large earthquakes make the planet "ring" like a bell. These oscillations also depend strongly on the inner layers ...

  9. Earth - Wikipedia

    en.wikipedia.org/wiki/Earth

    Earth's surface is the boundary between the atmosphere, and the solid Earth and oceans. Defined in this way, it has an area of about 510 million km 2 (197 million sq mi). [12] Earth can be divided into two hemispheres: by latitude into the polar Northern and Southern hemispheres; or by longitude into the continental Eastern and Western hemispheres.