enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    The only divergence for probabilities over a finite alphabet that is both an f-divergence and a Bregman divergence is the Kullback–Leibler divergence. [8] The squared Euclidean divergence is a Bregman divergence (corresponding to the function ⁠ x 2 {\displaystyle x^{2}} ⁠ ) but not an f -divergence.

  3. f-divergence - Wikipedia

    en.wikipedia.org/wiki/F-divergence

    In probability theory, an -divergence is a certain type of function (‖) that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence , Hellinger distance , and total variation distance , are special cases of f {\displaystyle f} -divergence.

  4. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    In mathematical statistics, the Kullback–Leibler (KL) divergence (also called relative entropy and I-divergence [1]), denoted (), is a type of statistical distance: a measure of how much a model probability distribution Q is different from a true probability distribution P.

  5. Total variation distance of probability measures - Wikipedia

    en.wikipedia.org/wiki/Total_variation_distance...

    Total variation distance is half the absolute area between the two curves: Half the shaded area above. In probability theory, the total variation distance is a statistical distance between probability distributions, and is sometimes called the statistical distance, statistical difference or variational distance.

  6. Bregman divergence - Wikipedia

    en.wikipedia.org/wiki/Bregman_divergence

    The only divergence on that is both a Bregman divergence and an f-divergence is the Kullback–Leibler divergence. [ 6 ] If n ≥ 3 {\displaystyle n\geq 3} , then any Bregman divergence on Γ n {\displaystyle \Gamma _{n}} that satisfies the data processing inequality must be the Kullback–Leibler divergence.

  7. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point. As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the ...

  8. Discrepancy function - Wikipedia

    en.wikipedia.org/wiki/Discrepancy_function

    Larger values of the discrepancy function indicate a poor fit of the model to data. In general, the parameter estimates for a given model are chosen so as to make the discrepancy function for that model as small as possible. Analogous concepts in statistics are known as goodness of fit or statistical distance, and include deviance and divergence.

  9. Hellinger distance - Wikipedia

    en.wikipedia.org/wiki/Hellinger_distance

    In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.