enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    The only divergence for probabilities over a finite alphabet that is both an f-divergence and a Bregman divergence is the Kullback–Leibler divergence. [8] The squared Euclidean divergence is a Bregman divergence (corresponding to the function ⁠ x 2 {\displaystyle x^{2}} ⁠ ) but not an f -divergence.

  3. f-divergence - Wikipedia

    en.wikipedia.org/wiki/F-divergence

    In probability theory, an -divergence is a certain type of function (‖) that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence , Hellinger distance , and total variation distance , are special cases of f {\displaystyle f} -divergence.

  4. Hellinger distance - Wikipedia

    en.wikipedia.org/wiki/Hellinger_distance

    In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.

  5. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    In mathematical statistics, the Kullback–Leibler (KL) divergence (also called relative entropy and I-divergence [1]), denoted (), is a type of statistical distance: a measure of how much a model probability distribution Q is different from a true probability distribution P.

  6. Bregman divergence - Wikipedia

    en.wikipedia.org/wiki/Bregman_divergence

    The only divergence on that is both a Bregman divergence and an f-divergence is the Kullback–Leibler divergence. [ 6 ] If n ≥ 3 {\displaystyle n\geq 3} , then any Bregman divergence on Γ n {\displaystyle \Gamma _{n}} that satisfies the data processing inequality must be the Kullback–Leibler divergence.

  7. Total variation distance of probability measures - Wikipedia

    en.wikipedia.org/wiki/Total_variation_distance...

    The total variation distance (or half the norm) arises as the optimal transportation cost, when the cost function is (,) =, that is, ‖ ‖ = (,) = {(): =, =} = ⁡ [], where the expectation is taken with respect to the probability measure on the space where (,) lives, and the infimum is taken over all such with marginals and , respectively.

  8. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The continuous mapping theorem states that for a continuous function g, if the sequence {X n} converges in distribution to X, then {g(X n)} converges in distribution to g(X). Note however that convergence in distribution of {X n} to X and {Y n} to Y does in general not imply convergence in distribution of {X n + Y n} to X + Y or of {X n Y n} to XY.

  9. Fisher information metric - Wikipedia

    en.wikipedia.org/wiki/Fisher_information_metric

    By Chentsov’s theorem, the Fisher information metric on statistical models is the only Riemannian metric (up to rescaling) that is invariant under sufficient statistics. [3] [4] It can also be understood to be the infinitesimal form of the relative entropy (i.e., the Kullback–Leibler divergence); specifically, it is the Hessian of