Search results
Results from the WOW.Com Content Network
In physics, chemistry and biology, a potential gradient is the local rate of change of the potential with respect to displacement, i.e. spatial derivative, or gradient. This quantity frequently occurs in equations of physical processes because it leads to some form of flux .
Note that the array of linear equations = = can be inverted to = = where the c ij with i = j are called the coefficients of capacity and the c ij with i ≠ j are called the coefficients of electrostatic induction.
By placing φ as potential, ∇φ is a conservative field. Work done by conservative forces does not depend on the path followed by the object, but only the end points, as the above equation shows. The gradient theorem also has an interesting converse: any path-independent vector field can be expressed as the gradient of a scalar field. Just ...
These equations are inhomogeneous versions of the wave equation, with the terms on the right side of the equation serving as the source functions for the wave. As with any wave equation, these equations lead to two types of solution: advanced potentials (which are related to the configuration of the sources at future points in time), and ...
If ϕ is a velocity potential, then ϕ + f(t) is also a velocity potential for u, where f(t) is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable. The Laplacian of a velocity potential is equal to the divergence of the corresponding flow.
The vector potential admitted by a solenoidal field is not unique. If is a vector potential for , then so is +, where is any continuously differentiable scalar function. . This follows from the fact that the curl of the gradient is ze
For two-body potentials this gradient reduces, thanks to the symmetry with respect to in the potential form, to straightforward differentiation with respect to the interatomic distances . However, for many-body potentials (three-body, four-body, etc.) the differentiation becomes considerably more complex [ 12 ] [ 13 ] since the potential may ...
Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.