Search results
Results from the WOW.Com Content Network
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
As one degree is 1 / 360 of a circle, one minute of arc is 1 / 21600 of a circle – such that the polar circumference of the Earth would be exactly 21,600 miles. Gunter used Snellius's circumference to define a nautical mile as 6,080 feet, the length of one minute of arc at 48 degrees latitude. [24]
[1] This diagram gives a visual analogue using a square: regardless of the size of the square, the added perimeter is the sum of the four blue arcs, a circle with the same radius as the offset. More formally, let c be the Earth's circumference, r its radius, Δc the added string length and Δr the added radius.
The Earth's radius is the distance from Earth's center to its surface, about 6,371 km (3,959 mi). While "radius" normally is a characteristic of perfect spheres, the Earth deviates from spherical by only a third of a percent, sufficiently close to treat it as a sphere in many contexts and justifying the term "the radius of the Earth".
For planet Earth, which can be approximated as an oblate spheroid with radii 6 378.1 km and 6 356.8 km, the mean radius is = (( ) ) / = . The equatorial and polar radii of a planet are often denoted r e {\displaystyle r_{e}} and r p {\displaystyle r_{p}} , respectively.
[87] [88] Earth's shape also has local topographic variations; the largest local variations, like the Mariana Trench (10,925 metres or 35,843 feet below local sea level), [89] shortens Earth's average radius by 0.17% and Mount Everest (8,848 metres or 29,029 feet above local sea level) lengthens it by 0.14%.
The radius of this Apollonius circle is + where is the incircle radius and is the semiperimeter of the triangle. [ 27 ] The following relations hold among the inradius r {\displaystyle r} , the circumradius R {\displaystyle R} , the semiperimeter s {\displaystyle s} , and the excircle radii r a {\displaystyle r_{a}} , r b {\displaystyle r_{b ...
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...