Search results
Results from the WOW.Com Content Network
Python: The standard library includes a Fraction class in the module fractions. [6] Ruby: native support using special syntax. Smalltalk represents rational numbers using a Fraction class in the form p/q where p and q are arbitrary size integers. Applying the arithmetic operations *, +, -, /, to fractions returns a reduced fraction. With ...
The simplest fraction 3 / y with a three-term expansion is 3 / 7 . A fraction 4 / y requires four terms in its greedy expansion if and only if y ≡ 1 or 17 (mod 24), for then the numerator −y mod x of the remaining fraction is 3 and the denominator is 1 (mod 6). The simplest fraction 4 / y with a four-term ...
For instance, the primary pseudoperfect number 1806 is the product of the prime numbers 2, 3, 7, and 43, and gives rise to the Egyptian fraction 1 = 1 / 2 + 1 / 3 + 1 / 7 + 1 / 43 + 1 / 1806 . Egyptian fractions are normally defined as requiring all denominators to be distinct, but this requirement can be ...
are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator. This step is called clearing fractions.
The simplest algorithm for generating a representation of the Mandelbrot set is known as the "escape time" algorithm. A repeating calculation is performed for each x, y point in the plot area and based on the behavior of that calculation, a color is chosen for that pixel.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1] In other words, a fraction a / b is irreducible if and only if a and b are coprime ...
The continued fraction method is based on Dixon's factorization method. It uses convergents in the regular continued fraction expansion of , +. Since this is a quadratic irrational, the continued fraction must be periodic (unless n is square, in which case the factorization is obvious).