enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...

  3. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    An example FFT algorithm structure, using a decomposition into half-size FFTs A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz. A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT).

  4. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    The fastest known algorithms for the multiplication of very large integers use the polynomial multiplication method outlined above. Integers can be treated as the value of a polynomial evaluated specifically at the number base, with the coefficients of the polynomial corresponding to the digits in that base (ex. 123 = 1 ⋅ 10 2 + 2 ⋅ 10 1 ...

  5. Overlap–save method - Wikipedia

    en.wikipedia.org/wiki/Overlap–save_method

    When the DFT and IDFT are implemented by the FFT algorithm, the pseudocode above requires about N (log 2 (N) + 1) complex multiplications for the FFT, product of arrays, and IFFT. [ E ] Each iteration produces N-M+1 output samples, so the number of complex multiplications per output sample is about :

  6. Overlap–add method - Wikipedia

    en.wikipedia.org/wiki/Overlap–add_method

    The two methods are also compared in Figure 3, created by Matlab simulation. The contours are lines of constant ratio of the times it takes to perform both methods. When the overlap-add method is faster, the ratio exceeds 1, and ratios as high as 3 are seen. Fig 3: Gain of the overlap-add method compared to a single, large circular convolution.

  7. Circular convolution - Wikipedia

    en.wikipedia.org/wiki/Circular_convolution

    Furthermore, the circular convolution is very efficient to compute, using a fast Fourier transform (FFT) algorithm and the circular convolution theorem. There are also methods for dealing with an x sequence that is longer than a practical value for N. The sequence is divided into segments (blocks) and processed piecewise. Then the filtered ...

  8. Discrete Fourier transform over a ring - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform...

    In order to align with the complex case and ensure the matrix is order 4 exactly, we can normalize the above DFT matrix with . Note that though n {\displaystyle {\sqrt {n}}} may not exist in the splitting field F q {\displaystyle F_{q}} of x n − 1 {\displaystyle x^{n}-1} , we may form a quadratic extension F q 2 ≅ F q [ x ] / ( x 2 − n ...

  9. Cepstrum - Wikipedia

    en.wikipedia.org/wiki/Cepstrum

    The method is a tool for investigating periodic structures in frequency spectra. The power cepstrum has applications in the analysis of human speech. The term cepstrum was derived by reversing the first four letters of spectrum. Operations on cepstra are labelled quefrency analysis (or quefrency alanysis [1]), liftering, or cepstral analysis.