enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Euclid offered a proof published in his work Elements (Book IX, Proposition 20), [1] which is paraphrased here. [2] Consider any finite list of prime numbers p 1, p 2, ..., p n. It will be shown that there exists at least one additional prime number not included in this list. Let P be the product of all the prime numbers in the list: P = p 1 p ...

  3. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    This was proved by Leonhard Euler in 1737, [1] and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series).

  4. Euclid–Euler theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid–Euler_theorem

    It states that an even number is perfect if and only if it has the form 2 p−1 (2 p − 1), where 2 p − 1 is a prime number. The theorem is named after mathematicians Euclid and Leonhard Euler, who respectively proved the "if" and "only if" aspects of the theorem. It has been conjectured that there are infinitely many Mersenne primes.

  5. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    Both sides of the Euler product formula converge for Re(s) > 1. The proof of Euler's identity uses only the formula for the geometric series and the fundamental theorem of arithmetic. Since the harmonic series, obtained when s = 1, diverges, Euler's formula (which becomes Π p ⁠ p / p − 1 ⁠) implies that there are infinitely many primes. [5]

  6. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    Applications of the harmonic series and its partial sums include Euler's proof that there are infinitely many prime numbers, the analysis of the coupon collector's problem on how many random trials are needed to provide a complete range of responses, the connected components of random graphs, the block-stacking problem on how far over the edge ...

  7. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    So 11 and 13 are twin primes, as are 599 and 601. Now, it's a Day 1 Number Theory fact that there are infinitely many prime numbers. So, are there infinitely many twin primes? The Twin Prime ...

  8. Euclidean theorem - Wikipedia

    en.wikipedia.org/wiki/Euclidean_theorem

    Euclid's theorem that there are infinitely many prime numbers; Euclid's lemma, also called Euclid's first theorem, on the prime factors of products; The Euclid–Euler theorem characterizing the even perfect numbers; Geometric mean theorem about right triangle altitude

  9. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    In particular, the proof of the example of infinitely many primes of the form + makes an argument similar to the one made in the proof of Euclid's theorem (Silverman 2013). The proof is given below: We want to prove that there are infinitely many primes of the form +.