Search results
Results from the WOW.Com Content Network
The graviton is a hypothetical tensor boson proposed to be the carrier of gravitational force in some quantum theories of gravity, but no such theory has been successfully incorporated into the Standard Model, so the Standard Model neither predicts any such particle nor requires it, and no gravitational quantum particle has been indicated by experiment.
A luxon travels as fast as light in vacuum and has no rest mass. A tachyon is a hypothetical particle that travels faster than the speed of light so they would paradoxically experience time in reverse (due to inversion of the theory of relativity) and would violate the known laws of causality. A tachyon has an imaginary rest mass.
The three masses differ so little that they cannot possibly be distinguished experimentally within any practical flight path. The proportion of each mass state in the pure flavor states produced has been found to depend profoundly on the flavor. The relationship between flavor and mass eigenstates is encoded in the PMNS matrix. Experiments have ...
It has no intrinsic spin, and for that reason is classified as a boson with spin-0. [34] The Higgs boson plays a unique role in the Standard Model, by explaining why the other elementary particles, except the photon and gluon, are massive. In particular, the Higgs boson explains why the photon has no mass, while the W and Z bosons are very
The spin-half particles have no right/left chirality pair with the same SU(2) representations and equal and opposite weak hypercharges, so assuming these gauge charges are conserved in the vacuum, none of the spin-half particles could ever swap chirality, and must remain massless. Additionally, we know experimentally that the W and Z bosons are ...
The photon has no electric charge, [17] [18] is generally considered to have zero rest mass [19] and is a stable particle. The experimental upper limit on the photon mass [20] [21] is very small, on the order of 10 −50 kg; its lifetime would be more than 10 18 years. [22] For comparison the age of the universe is about 1.38 × 10 10 years.
the mass–energy equivalence formula which gives the energy in terms of the momentum and the rest mass of a particle. The equation for the mass shell is also often written in terms of the four-momentum ; in Einstein notation with metric signature (+,−,−,−) and units where the speed of light c = 1 {\displaystyle c=1} , as p μ p μ ≡ p ...
Figure 1: A comparison of Yukawa potentials where = and with various values for m. Figure 2: A "long-range" comparison of Yukawa and Coulomb potentials' strengths where =. If the particle has no mass (i.e., m = 0), then the Yukawa potential reduces to a Coulomb potential, and the range is said to be infinite.