Search results
Results from the WOW.Com Content Network
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.
The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written m s. [ 1 ] [ 2 ] The value of m s is the component of spin angular momentum, in units of the reduced Planck constant ħ , parallel to a given direction (conventionally labelled the z –axis).
The general form of wavefunction for a system of particles, each with position r i and z-component of spin s z i. Sums are over the discrete variable s z , integrals over continuous positions r . For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is ...
However, in quantum physics, there is another type of angular momentum, called spin angular momentum, represented by the spin operator S. Spin is often depicted as a particle literally spinning around an axis, but this is a misleading and inaccurate picture: spin is an intrinsic property of a particle, unrelated to any sort of motion in space ...
In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system. To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantum numbers includes the principal, azimuthal, magnetic, and spin quantum numbers. To describe other ...
This is the basis for saying conservation of angular momentum is a general principle of physics. For a particle without spin, J = L, so orbital angular momentum is conserved in the same circumstances. When the spin is nonzero, the spin–orbit interaction allows angular momentum to transfer from L to S or back.
The sum over r covers other degrees of freedom specific for the field, such as polarization or spin; it usually comes out as a sum from 1 to 2 or from 1 to 3. E p is the relativistic energy for a momentum p quantum of the field, = m 2 c 4 + c 2 p 2 {\textstyle ={\sqrt {m^{2}c^{4}+c^{2}\mathbf {p} ^{2}}}} when the rest mass is m .
The general expression for the spin angular momentum is [1] =, where is the speed of light in free space and is the conjugate canonical momentum of the vector potential.The general expression for the orbital angular momentum of light is =, where = {,,,} denotes four indices of the spacetime and Einstein's summation convention has been applied.