enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using control theory. [14] For example, dynamic search models are used to study labor-market behavior. [15] A crucial distinction is between deterministic and stochastic models. [16]

  3. Scenario optimization - Wikipedia

    en.wikipedia.org/wiki/Scenario_optimization

    The scenario approach or scenario optimization approach is a technique for obtaining solutions to robust optimization and chance-constrained optimization problems based on a sample of the constraints. It also relates to inductive reasoning in modeling and decision-making.

  4. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. [1] It has numerous applications in science, engineering and operations research.

  5. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v, an optimization problem might be "find a path from u to v that uses the fewest edges". This problem might have ...

  6. Multi-objective optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_optimization

    Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.

  7. Optimal experimental design - Wikipedia

    en.wikipedia.org/wiki/Optimal_experimental_design

    The optimization of sequential experimentation is studied also in stochastic programming and in systems and control. Popular methods include stochastic approximation and other methods of stochastic optimization. Much of this research has been associated with the subdiscipline of system identification. [30]

  8. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, [1] whereas mathematical optimization is in general NP-hard. [2 ...

  9. Maximum satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_satisfiability_problem

    In computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula.