Search results
Results from the WOW.Com Content Network
For example, if applied to 8-bit image displayed with 8-bit gray-scale palette it will further reduce color depth (number of unique shades of gray) of the image. Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images.
Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.
An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]
Histogram equalization is a popular example of these algorithms. Improvements in picture brightness and contrast can thus be obtained. In the field of computer vision, image histograms can be useful tools for thresholding. Because the information contained in the graph is a representation of pixel distribution as a function of tonal variation ...
In image processing, the balanced histogram thresholding method (BHT), [1] is a very simple method used for automatic image thresholding. Like Otsu's Method [ 2 ] and the Iterative Selection Thresholding Method , [ 3 ] this is a histogram based thresholding method.
The current histogram-equalized version of the 8x8 example image has errors, or at least doesn't match the matrix generated in the example. For example, this image should be significantly lighter at pixel position [1, 3] (Coordinates counted from 0 starting at top left corner) to match this the final histogram-equalized matrix. I think the ...
Use a weighted sum of the shape context distance, the image appearance distance, and the bending energy (a measure of how much transformation is required to bring the two shapes into alignment). To identify the unknown shape, use a nearest-neighbor classifier to compare its shape distance to shape distances of known objects.
It refers to a class of image transforms which aims to obtain images of which the histograms have a desired shape. [2] As specified, firstly it is necessary to convert the image so that it has a particular histogram. Assume an image x. The following formula is the equalization transform of this image: