enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data reduction - Wikipedia

    en.wikipedia.org/wiki/Data_reduction

    Data reduction is the transformation of numerical or alphabetical digital information derived empirically or experimentally into a corrected, ordered, and simplified form. . The purpose of data reduction can be two-fold: reduce the number of data records by eliminating invalid data or produce summary data and statistics at different aggregation levels for various applications

  3. Data compression ratio - Wikipedia

    en.wikipedia.org/wiki/Data_compression_ratio

    Data compression ratio, also known as compression power, is a measurement of the relative reduction in size of data representation produced by a data compression algorithm. It is typically expressed as the division of uncompressed size by compressed size.

  4. Data compression - Wikipedia

    en.wikipedia.org/wiki/Data_compression

    In information theory, data compression, source coding, [1] or bit-rate reduction is the process of encoding information using fewer bits than the original representation. [2] Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in ...

  5. Lossy compression - Wikipedia

    en.wikipedia.org/wiki/Lossy_compression

    While data reduction (compression, be it lossy or lossless) is a main goal of transform coding, it also allows other goals: one may represent data more accurately for the original amount of space [5] – for example, in principle, if one starts with an analog or high-resolution digital master, an MP3 file of a given size should provide a better ...

  6. Isomap - Wikipedia

    en.wikipedia.org/wiki/Isomap

    Isomap is a nonlinear dimensionality reduction method. It is one of several widely used low-dimensional embedding methods. [1] Isomap is used for computing a quasi-isometric, low-dimensional embedding of a set of high-dimensional data points.

  7. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  8. Antithetic variates - Wikipedia

    en.wikipedia.org/wiki/Antithetic_variates

    The antithetic variates technique consists, for every sample path obtained, in taking its antithetic path — that is given a path {, …,} to also take {, …,}.The advantage of this technique is twofold: it reduces the number of normal samples to be taken to generate N paths, and it reduces the variance of the sample paths, improving the precision.

  9. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension.