Search results
Results from the WOW.Com Content Network
The Mozingo reduction, also known as Mozingo reaction or thioketal reduction, is a chemical reaction capable of fully reducing a ketone or aldehyde to the corresponding alkane via a dithioacetal. [1] [2] The reaction scheme is as follows: [3]
Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H. Two broad strategies exist for carbonyl reduction. One method, which is favored in industry, uses hydrogen as the reductant.
The imine is then reduced to an amine by sodium cyanoborohydride. This reaction works on both aldehydes and ketones. The carbonyl can be treated with ammonia, a primary amine, or a secondary amine to produce, respectively, 1°, 2°, and 3° amines. [5] Aromatic ketones and aldehydes can be reductively deoxygenated using sodium cyanoborohydride. [6]
The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent. The reaction is named after its co-discoverer, John E. McMurry.
The term also refers to the removal of molecular oxygen (O 2) from gases and solvents, a step in air-free technique and gas purifiers. As applied to organic compounds, deoxygenation is a component of fuels production as well a type of reaction employed in organic synthesis, e.g. of pharmaceuticals.
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
The Fukuyama reduction is an organic reaction and an organic reduction in which a thioester is reduced to an aldehyde by a silyl hydride in presence of a catalytic amount of palladium. This reaction was invented in 1990 by Tohru Fukuyama. [1] In the original scope of the reaction the silyl hydride was triethylsilane and the catalyst palladium ...
The Shapiro reaction or tosylhydrazone decomposition is an organic reaction in which a ketone or aldehyde is converted to an alkene through an intermediate hydrazone in the presence of 2 equivalents of organolithium reagent. [1] [2] [3] The reaction was discovered by Robert H. Shapiro in 1967. [4]