enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    The relationship between thermal conductivity and conductance is analogous to the relationship between electrical conductivity and electrical conductance. Thermal resistance is the inverse of thermal conductance. [6] It is a convenient measure to use in multicomponent design since thermal resistances are additive when occurring in series. [7]

  3. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.

  4. R-value (insulation) - Wikipedia

    en.wikipedia.org/wiki/R-value_(insulation)

    Installed faced fiberglass batt insulation with its R-value visible (R-21) [1]. The R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive [2] flow of heat, in the context of construction. [3]

  5. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The fouling resistances can be calculated for a specific heat exchanger if the average thickness and thermal conductivity of the fouling are known. The product of the average thickness and thermal conductivity will result in the fouling resistance on a specific side of the heat exchanger. [17]

  6. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    Interfacial thermal resistance is a measure of an interface's resistance to thermal flow. This thermal resistance differs from contact resistance, as it exists even at atomically perfect interfaces. Understanding the thermal resistance at the interface between two materials is of primary significance in the study of its thermal properties.

  7. Thermal contact conductance - Wikipedia

    en.wikipedia.org/wiki/Thermal_contact_conductance

    A temperature drop is observed at the interface between the two surfaces in contact. This phenomenon is said to be a result of a thermal contact resistance existing between the contacting surfaces. Thermal contact resistance is defined as the ratio between this temperature drop and the average heat flow across the interface. [1]

  8. Heat flux - Wikipedia

    en.wikipedia.org/wiki/Heat_flux

    Accurate values for the material's thickness and thermal conductivity would be required in order to determine thermal resistance. Using the thermal resistance, along with temperature measurements on either side of the material, heat flux can then be indirectly calculated.

  9. Wiedemann–Franz law - Wikipedia

    en.wikipedia.org/wiki/Wiedemann–Franz_law

    Plot of the Wiedemann–Franz law for copper. Left axis: specific electric resistance ρ in 10 −10 Ω m, red line and specific thermal conductivity λ in W/(K m), green line. Right axis: ρ times λ in 100 U 2 /K, blue line and Lorenz number ρ λ / K in U 2 /K 2, pink line. Lorenz number is more or less constant.