Ad
related to: explanation of data analysis in research
Search results
Results from the WOW.Com Content Network
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession. [ 4 ] Data science is "a concept to unify statistics , data analysis , informatics , and their related methods " to "understand and analyze actual phenomena " with data . [ 5 ]
Level of analysis is used in the social sciences to point to the location, size, or scale of a research target. It is distinct from unit of observation in that the former refers to a more or less integrated set of relationships while the latter refers to the distinct unit from which data have been or will be gathered.
Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. [1] It is formed from a deductive approach where emphasis is placed on the testing of theory, shaped by empiricist and positivist philosophies. [1]
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."
Data analysis focuses on the process of examining past data through business understanding, data understanding, data preparation, modeling and evaluation, and deployment. [8] It is a subset of data analytics, which takes multiple data analysis processes to focus on why an event happened and what may happen in the future based on the previous data.
More recently, a collection of summarisation techniques has been formulated under the heading of exploratory data analysis: an example of such a technique is the box plot. In the business world, descriptive statistics provides a useful summary of many types of data.
To create a synthetic data point, take the vector between one of those k neighbors, and the current data point. Multiply this vector by a random number x which lies between 0, and 1. Add this to the current data point to create the new, synthetic data point. Many modifications and extensions have been made to the SMOTE method ever since its ...
Ad
related to: explanation of data analysis in research