Search results
Results from the WOW.Com Content Network
Sewers are often constructed as circular pipes. It has long been accepted that the value of n varies with the flow depth in partially filled circular pipes. [9] A complete set of explicit equations that can be used to calculate the depth of flow and other unknown variables when applying the Manning equation to circular pipes is available. [10]
The variations of Q/Q (full) and V/V (full) with H/D ratio is shown in figure(b).From the equation 5, maximum value of Q/Q (full) is found to be equal to 1.08 at H/D =0.94 which implies that maximum rate of discharge through a conduit is observed for a conduit partly full.
, the hydraulic diameter of the pipe (for a pipe of circular section, this equals D; otherwise D H = 4A/P for a pipe of cross-sectional area A and perimeter P) (m); v {\displaystyle \langle v\rangle } , the mean flow velocity , experimentally measured as the volumetric flow rate Q per unit cross-sectional wetted area (m/s);
An example of flow entering a channel would be a road side gutter. An example of flow leaving a channel would be an irrigation channel. This flow can be described using the continuity equation for continuous unsteady flow requires the consideration of the time effect and includes a time element as a variable.
Note that for the case of a circular pipe, D H = 4 π R 2 2 π R = 2 R {\displaystyle D_{\text{H}}={\frac {4\pi R^{2}}{2\pi R}}=2R} The need for the hydraulic diameter arises due to the use of a single dimension in the case of a dimensionless quantity such as the Reynolds number , which prefers a single variable for flow analysis rather than ...
Defining equation SI units Dimension Flow velocity vector field u = (,) m s −1 [L][T] −1: Velocity pseudovector field ω = s −1 [T] −1: Volume velocity ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [3]