enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    If that were the case, the 3d-orbital would have the same energy as the 3p-orbital, as it does in hydrogen, yet it clearly does not. There is no special reason why the Fe 2+ ion should have the same electron configuration as the chromium atom, given that iron has two more protons in its nucleus than chromium, and that the chemistry of the two ...

  3. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    In general, n determines size and energy of the orbital for a given nucleus; as n increases, the size of the orbital increases. The higher nuclear charge Z of heavier elements causes their orbitals to contract by comparison to lighter ones, so that the size of the atom remains very roughly constant, even as the number of electrons increases.

  4. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.

  5. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    Here [Ne] refers to the core electrons which are the same as for the element neon (Ne), the last noble gas before phosphorus in the periodic table. The valence electrons (here 3s 2 3p 3) are written explicitly for all atoms. Electron configurations of elements beyond hassium (element 108) have never been measured; predictions are used below.

  6. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    A diatomic molecular orbital diagram is used to understand the bonding of a diatomic molecule. MO diagrams can be used to deduce magnetic properties of a molecule and how they change with ionization. They also give insight to the bond order of the molecule, how many bonds are shared between the two atoms. [12]

  7. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The orbital wave functions are positive in the red regions and negative in the blue. The right column shows virtual MO's which are empty in the ground state, but may be occupied in excited states. In chemistry, a molecular orbital (/ ɒr b ə d l /) is a mathematical function describing the location and wave-like behavior of an electron in a ...

  8. Platinum - Wikipedia

    en.wikipedia.org/wiki/Platinum

    Platinum is a chemical element; it has symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish platina, a diminutive of plata "silver". [7] [8] Platinum is a member of the platinum group of elements and group 10 of the periodic table of ...

  9. d electron count - Wikipedia

    en.wikipedia.org/wiki/D_electron_count

    When a transition metal atom loses one or more electrons to form a positive ion, overall electron repulsion is reduced and the n d orbital energy is lowered more than the (n+1) s orbital energy. The ion is formed by removal of the outer s electrons and tends to have a d n configuration, [3]: 40 even though the s subshell is added to neutral ...