Search results
Results from the WOW.Com Content Network
Print/export Download as PDF; Printable version; ... kcal kcal 1.0 kcal (4.2 kJ) ... Hartree: Eh (Hartree) E h: 1.0 ...
≘ 2 625.499 639 4799 (50) kJ/mol ≘ 627.509 474 0631 (12) kcal/mol ≘ 219 474.631 363 20 (43) cm −1 ≘ 6 579.683 920 502 (13) THz. where: ħ is the reduced Planck constant, m e is the electron mass, e is the elementary charge, a 0 is the Bohr radius, ε 0 is the electric constant, c is the speed of light in vacuum, and; α is the fine ...
The values for most of the conversion factors used by Template:Convert come from international and national standards documents: . Organisation Intergouvernementale de la Convention du Mètre (2014) [2006].
Hartree defined units based on three physical constants: [1]: 91 Both in order to eliminate various universal constants from the equations and also to avoid high powers of 10 in numerical work, it is convenient to express quantities in terms of units, which may be called 'atomic units', defined as follows:
The kilocalorie per mole is a unit to measure an amount of energy per number of molecules, atoms, or other similar particles. It is defined as one kilocalorie of energy (1000 thermochemical gram calories) per one mole of substance. The unit symbol is written kcal/mol or kcal⋅mol −1. As typically measured, one kcal/mol represents a ...
This template provides easy inclusion of the latest CODATA recommended values of physical constants in articles. It gives the most recent values published, and will be updated when newer values become available, which is typically every four years.
In order to solve the equation of an electron in a spherical potential, Hartree first introduced atomic units to eliminate physical constants. Then he converted the Laplacian from Cartesian to spherical coordinates to show that the solution was a product of a radial function () / and a spherical harmonic with an angular quantum number , namely = (/) (,).
1 kJ/mol, converted to energy per molecule [9] 2.1×10 −21 J Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV) [10] 2.856×10 −21 J By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information 3–7×10 −21 J