Search results
Results from the WOW.Com Content Network
In population genetics, F-statistics (also known as fixation indices) describe the statistically expected level of heterozygosity in a population; more specifically the expected degree of (usually) a reduction in heterozygosity when compared to Hardy–Weinberg expectation.
It is usually associated with other statistical measures of population diversity, and is similar to expected heterozygosity. This statistic may be used to monitor diversity within or between ecological populations, to examine the genetic variation in crops and related species, [3] or to determine evolutionary relationships. [4]
When calculating an allele frequency for a diploid species, remember that homozygous individuals have two copies of an allele, whereas heterozygotes have only one. In our example, each of the 42 pink-flowered heterozygotes has one copy of the a allele, and each of the 9 white-flowered homozygotes has two copies.
Fst values between European populations. The fixation index (F ST) is a measure of population differentiation due to genetic structure.It is frequently estimated from genetic polymorphism data, such as single-nucleotide polymorphisms (SNP) or microsatellites.
The dbSNP can be searched using the Entrez SNP search tool. A variety of queries can be used for searching: an ss number ID, a refSNP number ID, a gene name, an experimental method, a population class, a population detail, a publication, a marker, an allele, a chromosome, a base position, a heterozygosity range, or a build number.
Tajima's D is a population genetic test statistic created by and named after the Japanese researcher Fumio Tajima. [1] Tajima's D is computed as the difference between two measures of genetic diversity: the mean number of pairwise differences and the number of segregating sites, each scaled so that they are expected to be the same in a neutrally evolving population of constant size.
McFarland standards. No. 0.5, 1 and 2. In microbiology, McFarland standards are used as a reference to adjust the turbidity of bacterial suspensions so that the number of bacteria will be within a given range to standardize microbial testing.
The CFU/plate is read from a plate in the linear range, and then the CFU/g (or CFU/mL) of the original is deduced mathematically, factoring in the amount plated and its dilution factor. A solution of bacteria at an unknown concentration is often serially diluted in order to obtain at least one plate with a countable number of bacteria. In this ...