Search results
Results from the WOW.Com Content Network
If the number of errors within a code word exceeds the error-correcting code's capability, it fails to recover the original code word. Interleaving alleviates this problem by shuffling source symbols across several code words, thereby creating a more uniform distribution of errors. [ 21 ]
This quantum mechanics -related article is a stub. You can help Wikipedia by expanding it.
Skip backward (to the start or previous file/track/chapter) U+23EE ⏮ #5862 Previous; to play previous part: To identify the control or the indicator to skip back to the top of the previous section, play the section and then stop. Skip forward (to the end or next file/track/chapter) U+23ED ⏭
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
Compute forward probabilities Compute backward probabilities β {\displaystyle \beta } Compute smoothed probabilities based on other information (i.e. noise variance for AWGN , bit crossover probability for binary symmetric channel )
A loop is a sequence of statements which is specified once but which may be carried out several times in succession. The code "inside" the loop (the body of the loop, shown below as xxx) is obeyed a specified number of times, or once for each of a collection of items, or until some condition is met, or indefinitely. When one of those items is ...
Turbo codes, as described first in 1993, implemented a parallel concatenation of two convolutional codes, with an interleaver between the two codes and an iterative decoder that passes information forth and back between the codes. [6] This design has a better performance than any previously conceived concatenated codes.
This LDPC code fragment represents a three-bit message encoded as six bits. Redundancy is used, here, to increase the chance of recovering from channel errors. This is a (6, 3) linear code, with n = 6 and k = 3. Again ignoring lines going out of the picture, the parity-check matrix representing this graph fragment is