Search results
Results from the WOW.Com Content Network
For each point on the curve take the vector from the point to the center of curvature and translate it so that it begins at the origin. Then the locus of points at the end of such vectors is called the radial of the curve. The equation for the radial is obtained by removing the x and y terms from the equation of
The form of YΔ- and ΔY-transformations used to define the Petersen family is as follows: . If a graph G contains a vertex v with exactly three neighbors, then the YΔ-transform of G at v is the graph formed by removing v from G and adding edges between each pair of its three neighbors.
These are given by the generating family F(t,(x,y)) = t 2 – 2tx + y. The zero level set F(t 0,(x,y)) = 0 gives the equation of the tangent line to the parabola at the point (t 0,t 0 2). The equation t 2 – 2tx + y = 0 can always be solved for y as a function of x and so, consider + = Substituting
The graph of the constant function y = c is a horizontal line in the plane that passes through the point (0, c). [2] In the context of a polynomial in one variable x, the constant function is called non-zero constant function because it is a polynomial of degree 0, and its general form is f(x) = c, where c is nonzero.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Power functions – relationships of the form y = a x k {\displaystyle y=ax^{k}} – appear as straight lines in a log–log graph, with the exponent corresponding to ...
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: =
While each non-complete word-representable graph G is 2(n − κ(G))-representable, where κ(G) is the size of a maximal clique in G, [7] the highest known representation number is floor(n/2) given by crown graphs with an all-adjacent vertex. [7] Interestingly, such graphs are not the only graphs that require long representations. [15]