Search results
Results from the WOW.Com Content Network
Euler's product formula for the gamma function, combined with the functional equation and an identity for the Euler–Mascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16): [1]
Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
It is almost certain that Euler meant that the sum of the reciprocals of the primes less than n is asymptotic to log log n as n approaches infinity. It turns out this is indeed the case, and a more precise version of this fact was rigorously proved by Franz Mertens in 1874. [3] Thus Euler obtained a correct result by questionable means.
The standard Gumbel distribution is the case where = and = with cumulative distribution function = ()and probability density function = (+).In this case the mode is 0, the median is ( ()), the mean is (the Euler–Mascheroni constant), and the standard deviation is /
The area of the blue region converges on the Euler–Mascheroni constant, which is the 0th Stieltjes constant. In mathematics , the Stieltjes constants are the numbers γ k {\displaystyle \gamma _{k}} that occur in the Laurent series expansion of the Riemann zeta function :
where is the Euler–Mascheroni constant. The sum converges for all complex z {\displaystyle z} , and we take the usual value of the complex logarithm having a branch cut along the negative real axis.
This page was last edited on 22 September 2021, at 21:40 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The Euler-Mascheroni constant emerges as the Improper Integral from zero to infinity at the integration on the product of negative Natural Logarithm and the Exponential reciprocal. But it is also the improper integral within the same limits on the Cardinalized Difference of the reciprocal of the Successor Function and the Exponential Reciprocal: